p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.287D4, C42.417C23, C4.592- (1+4), C8⋊Q8⋊13C2, D4⋊2Q8⋊9C2, D4⋊Q8⋊26C2, C4⋊C8.69C22, (C2×C8).69C23, C4⋊C4.174C23, (C2×C4).433C24, (C22×C4).515D4, C23.299(C2×D4), C4⋊Q8.316C22, C4.105(C8⋊C22), C8⋊C4.26C22, C4.Q8.37C22, C42.6C4⋊17C2, (C2×D4).179C23, (C4×D4).117C22, C22⋊C8.60C22, C2.D8.103C22, D4⋊C4.49C22, C4⋊D4.202C22, C23.19D4⋊28C2, C4⋊1D4.173C22, (C2×C42).894C22, C22.693(C22×D4), C2.64(D8⋊C22), (C22×C4).1098C23, C42.29C22⋊6C2, C42.C2.134C22, C42⋊C2.166C22, C23.37C23⋊22C2, C22.26C24.47C2, C2.81(C23.38C23), (C2×C4).557(C2×D4), C2.63(C2×C8⋊C22), SmallGroup(128,1967)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 364 in 183 conjugacy classes, 86 normal (28 characteristic)
C1, C2 [×3], C2 [×3], C4 [×4], C4 [×10], C22, C22 [×9], C8 [×4], C2×C4 [×6], C2×C4 [×15], D4 [×12], Q8 [×6], C23, C23 [×2], C42 [×4], C42 [×2], C22⋊C4 [×6], C4⋊C4 [×6], C4⋊C4 [×7], C2×C8 [×4], C22×C4 [×3], C22×C4 [×2], C2×D4 [×2], C2×D4 [×4], C2×Q8 [×3], C4○D4 [×4], C8⋊C4 [×2], C22⋊C8 [×2], D4⋊C4 [×8], C4⋊C8 [×2], C4.Q8 [×4], C2.D8 [×4], C2×C42, C42⋊C2 [×2], C4×D4 [×2], C4×D4, C4×Q8 [×2], C4⋊D4 [×2], C4⋊D4, C22⋊Q8 [×2], C4.4D4, C42.C2 [×2], C4⋊1D4, C4⋊Q8 [×3], C2×C4○D4, C42.6C4, D4⋊Q8 [×2], D4⋊2Q8 [×2], C23.19D4 [×4], C42.29C22 [×2], C8⋊Q8 [×2], C22.26C24, C23.37C23, C42.287D4
Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], C2×D4 [×6], C24, C8⋊C22 [×2], C22×D4, 2- (1+4) [×2], C23.38C23, C2×C8⋊C22, D8⋊C22, C42.287D4
Generators and relations
G = < a,b,c,d | a4=b4=d2=1, c4=b2, ab=ba, cac-1=ab2, dad=a-1, cbc-1=dbd=a2b, dcd=a2b2c3 >
(1 29 57 42)(2 26 58 47)(3 31 59 44)(4 28 60 41)(5 25 61 46)(6 30 62 43)(7 27 63 48)(8 32 64 45)(9 23 39 53)(10 20 40 50)(11 17 33 55)(12 22 34 52)(13 19 35 49)(14 24 36 54)(15 21 37 51)(16 18 38 56)
(1 17 5 21)(2 56 6 52)(3 19 7 23)(4 50 8 54)(9 44 13 48)(10 32 14 28)(11 46 15 42)(12 26 16 30)(18 62 22 58)(20 64 24 60)(25 37 29 33)(27 39 31 35)(34 47 38 43)(36 41 40 45)(49 63 53 59)(51 57 55 61)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 42)(2 28)(3 48)(4 26)(5 46)(6 32)(7 44)(8 30)(9 49)(10 18)(11 55)(12 24)(13 53)(14 22)(15 51)(16 20)(17 33)(19 39)(21 37)(23 35)(25 61)(27 59)(29 57)(31 63)(34 54)(36 52)(38 50)(40 56)(41 58)(43 64)(45 62)(47 60)
G:=sub<Sym(64)| (1,29,57,42)(2,26,58,47)(3,31,59,44)(4,28,60,41)(5,25,61,46)(6,30,62,43)(7,27,63,48)(8,32,64,45)(9,23,39,53)(10,20,40,50)(11,17,33,55)(12,22,34,52)(13,19,35,49)(14,24,36,54)(15,21,37,51)(16,18,38,56), (1,17,5,21)(2,56,6,52)(3,19,7,23)(4,50,8,54)(9,44,13,48)(10,32,14,28)(11,46,15,42)(12,26,16,30)(18,62,22,58)(20,64,24,60)(25,37,29,33)(27,39,31,35)(34,47,38,43)(36,41,40,45)(49,63,53,59)(51,57,55,61), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,42)(2,28)(3,48)(4,26)(5,46)(6,32)(7,44)(8,30)(9,49)(10,18)(11,55)(12,24)(13,53)(14,22)(15,51)(16,20)(17,33)(19,39)(21,37)(23,35)(25,61)(27,59)(29,57)(31,63)(34,54)(36,52)(38,50)(40,56)(41,58)(43,64)(45,62)(47,60)>;
G:=Group( (1,29,57,42)(2,26,58,47)(3,31,59,44)(4,28,60,41)(5,25,61,46)(6,30,62,43)(7,27,63,48)(8,32,64,45)(9,23,39,53)(10,20,40,50)(11,17,33,55)(12,22,34,52)(13,19,35,49)(14,24,36,54)(15,21,37,51)(16,18,38,56), (1,17,5,21)(2,56,6,52)(3,19,7,23)(4,50,8,54)(9,44,13,48)(10,32,14,28)(11,46,15,42)(12,26,16,30)(18,62,22,58)(20,64,24,60)(25,37,29,33)(27,39,31,35)(34,47,38,43)(36,41,40,45)(49,63,53,59)(51,57,55,61), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,42)(2,28)(3,48)(4,26)(5,46)(6,32)(7,44)(8,30)(9,49)(10,18)(11,55)(12,24)(13,53)(14,22)(15,51)(16,20)(17,33)(19,39)(21,37)(23,35)(25,61)(27,59)(29,57)(31,63)(34,54)(36,52)(38,50)(40,56)(41,58)(43,64)(45,62)(47,60) );
G=PermutationGroup([(1,29,57,42),(2,26,58,47),(3,31,59,44),(4,28,60,41),(5,25,61,46),(6,30,62,43),(7,27,63,48),(8,32,64,45),(9,23,39,53),(10,20,40,50),(11,17,33,55),(12,22,34,52),(13,19,35,49),(14,24,36,54),(15,21,37,51),(16,18,38,56)], [(1,17,5,21),(2,56,6,52),(3,19,7,23),(4,50,8,54),(9,44,13,48),(10,32,14,28),(11,46,15,42),(12,26,16,30),(18,62,22,58),(20,64,24,60),(25,37,29,33),(27,39,31,35),(34,47,38,43),(36,41,40,45),(49,63,53,59),(51,57,55,61)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,42),(2,28),(3,48),(4,26),(5,46),(6,32),(7,44),(8,30),(9,49),(10,18),(11,55),(12,24),(13,53),(14,22),(15,51),(16,20),(17,33),(19,39),(21,37),(23,35),(25,61),(27,59),(29,57),(31,63),(34,54),(36,52),(38,50),(40,56),(41,58),(43,64),(45,62),(47,60)])
Matrix representation ►G ⊆ GL8(𝔽17)
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
16 | 16 | 1 | 2 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 16 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 | 15 | 2 |
0 | 0 | 0 | 0 | 0 | 3 | 2 | 2 |
0 | 0 | 0 | 0 | 2 | 15 | 14 | 0 |
0 | 0 | 0 | 0 | 15 | 15 | 0 | 14 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 16 | 15 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
15 | 13 | 0 | 6 | 0 | 0 | 0 | 0 |
15 | 15 | 6 | 6 | 0 | 0 | 0 | 0 |
15 | 15 | 15 | 15 | 0 | 0 | 0 | 0 |
15 | 0 | 4 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 2 | 0 | 3 |
0 | 0 | 0 | 0 | 15 | 2 | 3 | 0 |
0 | 0 | 0 | 0 | 3 | 0 | 15 | 2 |
0 | 0 | 0 | 0 | 0 | 14 | 15 | 15 |
16 | 16 | 1 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 | 15 | 2 |
0 | 0 | 0 | 0 | 0 | 14 | 15 | 15 |
0 | 0 | 0 | 0 | 2 | 2 | 0 | 3 |
0 | 0 | 0 | 0 | 15 | 2 | 3 | 0 |
G:=sub<GL(8,GF(17))| [0,16,1,16,0,0,0,0,0,16,0,16,0,0,0,0,16,1,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,3,0,2,15,0,0,0,0,0,3,15,15,0,0,0,0,15,2,14,0,0,0,0,0,2,2,0,14],[0,1,16,1,0,0,0,0,0,1,0,1,0,0,0,0,1,16,0,0,0,0,0,0,0,15,0,16,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[15,15,15,15,0,0,0,0,13,15,15,0,0,0,0,0,0,6,15,4,0,0,0,0,6,6,15,6,0,0,0,0,0,0,0,0,2,15,3,0,0,0,0,0,2,2,0,14,0,0,0,0,0,3,15,15,0,0,0,0,3,0,2,15],[16,0,0,0,0,0,0,0,16,0,16,0,0,0,0,0,1,16,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,3,0,2,15,0,0,0,0,0,14,2,2,0,0,0,0,15,15,0,3,0,0,0,0,2,15,3,0] >;
Character table of C42.287D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 4 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | -2 | -2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | -2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ22 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from 2- (1+4), Schur index 2 |
ρ24 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from 2- (1+4), Schur index 2 |
ρ25 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 4i | 0 | 0 | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D8⋊C22 |
ρ26 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 4i | 0 | 0 | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D8⋊C22 |
In GAP, Magma, Sage, TeX
C_4^2._{287}D_4
% in TeX
G:=Group("C4^2.287D4");
// GroupNames label
G:=SmallGroup(128,1967);
// by ID
G=gap.SmallGroup(128,1967);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,120,758,891,100,675,248,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=d^2=1,c^4=b^2,a*b=b*a,c*a*c^-1=a*b^2,d*a*d=a^-1,c*b*c^-1=d*b*d=a^2*b,d*c*d=a^2*b^2*c^3>;
// generators/relations